Symbols 3 Function, section 3 and 4 Technical data 5 Characteristic curves 6 to 11 Unit dimensions, single pump with controller 12 Dynamic behaviour of the pressure control 13 Controller programme: Symbols, characteristic curves, unit dimensions 14 to 17 5641/97 Lock 18 Engineering guidelines for multiple pumps 19 H/A/D Combination possibilities, multiple pump ordering details 20 Type P2V7/...+GF1/... Combination pump - unit dimensions 21 to 26 Motor-pump-drive unit, multiple pump ordering details, E-motor selection table 27 E-motor technical data and unit dimensions 28 29 Spare parts, seal kits, connection flanges Engineering and commissioning guidelines 30 Installation guidelines 31 **Features** PV7 Variable displacement Low operating noise variations of combination pumps - Long bearing life due to hydro-dynamically lubricated plain

Nominal sizes 14 to 150 Series 1X

Industrial

Hvdraulics

RE 10 515/07.02

Replaces: 05.00

Maximum operating pressure 160 bar

Maximum flow 270 L/min

Variable vane pumps, pilot operated, type PV7

Overview of contents

Features

Contents Page 1 Ordering details, preferred types 2

- Suitable for use with HETG and HEES fluids
- The standard PV7 pumps can be combined into numerous
- The PV7 pumps can also be combined with internal and external gear pumps, axial piston and radial piston pumps MPU

Is supplied as a completely assembled unit

- Drive coupling and pump mounting bracket are not required
- Low operating noise due to the compact design _

by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using

electronic systems, in any form or by any means, without the prior written authorisation of Bosch Rexroth AG. In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.

This document was prepared with the greatest of care, and all statements have been examined for correctness. This document is subject to alterations for reason of the continuing further developments of products. No liability can be accepted for any incorrect or incomplete statements.

Mobile Hydraulics

Type PV7/16...C...

H/A 1790

- bearings
- Control facility for pressure and flow
- Low hysteresis
- Very short control times for an and off stroke
- Installation and connection dimensions to VDMA 24 560 part 1 ISO 3019/2

© 2002

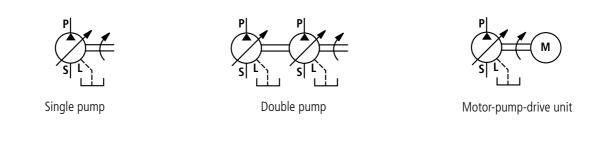
Ordering details

Build and nominal sizes	Pipe conn	ection	Zero str	oke pressure ran	ae
BS 10-NS 14 cm ³ = 10-14			16 =	up to 160 bar	<u> </u>
BS 10-NS 20 cm ³ = 10-20	= 01		10 =	up to 100 bar	
BS 16-NS 20 cm ³ = 16-20	= 01		16 =	up to 160 bar	
BS 16-NS 30 cm ³ = 16-30	= 01		08 =	up to 80 bar	
BS 25-NS 30 cm ³ = 25-30	= 01		16 =	up to 160 bar	
BS 25-NS 45 cm ³ = 25-45	= 01		08 =	up to 80 bar	
BS 40-NS 45 cm ³ = 40-45	= 37		16 =	up to 160 bar	
BS 40-NS 71 cm ³ = 40-71	= 37		= 80	up to 80 bar	
BS 63-NS 71 cm ³ = 63-71	= 07		16 =	up to 160 bar	
BS 63-NS 94 cm ³ = 63-94	= 07		08 =	up to 80 bar	
BS 100-NS 118 cm ³ = 100-11	8 = 07		16 =	up to 160 bar	
BS 100-NS 150 cm ³ = 100-15	0 = 07		- 80	up to 80 bar	
PV7-1X /	RE		<u> </u>		
Series				WG =	Directional valve ¹⁾ Normally closed
Series 10 to 19 = 1X				WH =	Normally open
(10 to 19: unchanged installation and connection dimensions)					Controller option
Direction of rotation				0 =	Standard
Clockwise =	R			3 =	Lockable
Shaft end				5 =	With K-plate
Cylindrical drive shaft with through drive	= E			6 = 7 =	With Q-plate
Pipe connections	<u> </u>			7 = 8 =	Lockable with K-plate Lockable with Q-plate
Standard version				0 -	· · · ·
BS 10, 16, 25:		C =	_		Controller type Pressure controller
Suction, pressure connection: pipe thread	= 01			e controller for hydrau	lic remote pressure control
BS 40:	-	E =			cal remote pressure control
Suction connection: SAE flange connection,			- Tressure	controller with clean	(on request)
Pressure connection: pipe thread	= 37	N =	=		Flow controller
BS 63, 100:		W	D		
			= Pressure co	ontroller with electrical	2-stage pressure adjustment
Suction, pressure connection: SAE flange connect	ion = 07		Pressure control	ontroller with electrical	2-stage pressure adjustment Seals

Ordering examples: PV7-1X/16 20RE01MC5-16 PV7-1X/40-45RE37KD0-16

For pumps with settings to the customer's requirements: On the order please state the required setting data in clear text (e.g. $q_{Vmax} = 20$ L/min; $p_{zero \ stroke} = 70$ bar). The pump will be set to the required values and the operating noise optimised respectively.

Without any clear text information the flow and the zero stroke pressure will be set to the relevant maximum values and the operating noise will be adjusted accordingly.


¹⁾ Only for C5, D5 and W controllers (optional)

Туре	Material No.	Туре	Material No.
PV7-1X/10-14RE01MC0-16	00580381	PV7-1X/10-14RE01MD0-16	00504653
PV7-1X/10-20RE01MC0-10	00534143	PV7-1X/10-20RE01MD0-16	00906584
PV7-1X/16-20RE01MC0-16	00580382	PV7-1X/16-20RE01MD0-16	00509274
PV7-1X/16-30RE01MC0-08	00533582	PV7-1X/16-30RE01MD0-08	00560658
PV7-1X/25-30RE01MC0-16	00580383	PV7-1X/25-30RE01MD0-16	00509506
PV7-1X/25-45RE01MC0-08	00534508	PV7-1X/25-45RE01MD0-08	00568833
PV7-1X/40-45RE37MC0-16	00580384	PV7-1X/40-45RE37MD0-16	00593330
PV7–1X/40-71RE37MC0-08	00535588	PV7-1X/40-71RE37MD0-08	00539886
PV7-1X/63-71RE07MC0-16	00506808	PV7-1X/63-71RE07MD0-16	00519094
PV7-1X/63-94RE07MC0-08	00560659	PV7-1X/63-94RE07MD0-08	00574560
PV7-1X/100-118RE07MC0-16	00506809	PV7-1X/100-118RE07MD0-16	00532770
PV7-1X/100-150RE07MC0-08	00561846	PV7-1X/100-150RE07MD0-08	00915470

K =

Preferred types (readily available)

FKM shaft seal ring (other seals NBR)

Function, section

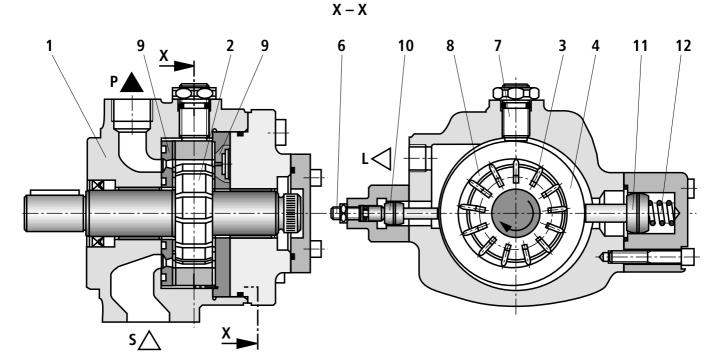
Design

The PV7 hydraulic pumps are variable displacement vane pumps.

They mainly consist of the housing (1), rotor (2), vanes (3), stator ring (4), pressure controller (5) and adjustment screw (6).

The circular stator ring (4) is retained between the small control piston (10) and the large control piston (11). The third contact point of the ring is the height adjustment screw (7).

The driven rotor (2) rotates inside the stator ring (4). The vanes contained within the rotor are pressed against the stator ring (4) by centrifugal force.


Adjustment

At the same time as the system pressure builds up, the rear surface of the small control piston (10) is connected to the system via a channel and is, therefore always subjected to the system pressure.

When the pump is in its displacement position, the rear surface of the large control piston (11) is also subjected to the system pressure via a drilling in the control piston (14). The control piston (11) with the larger surface area holds the stator ring (4) in its eccentric position.

The pumps displaces fluid at a pressure that is lower than the zero stroke pressure set on the pressure controller (5).

The control piston (14) is held in a certain position by a spring (13).

Suction and displacement process

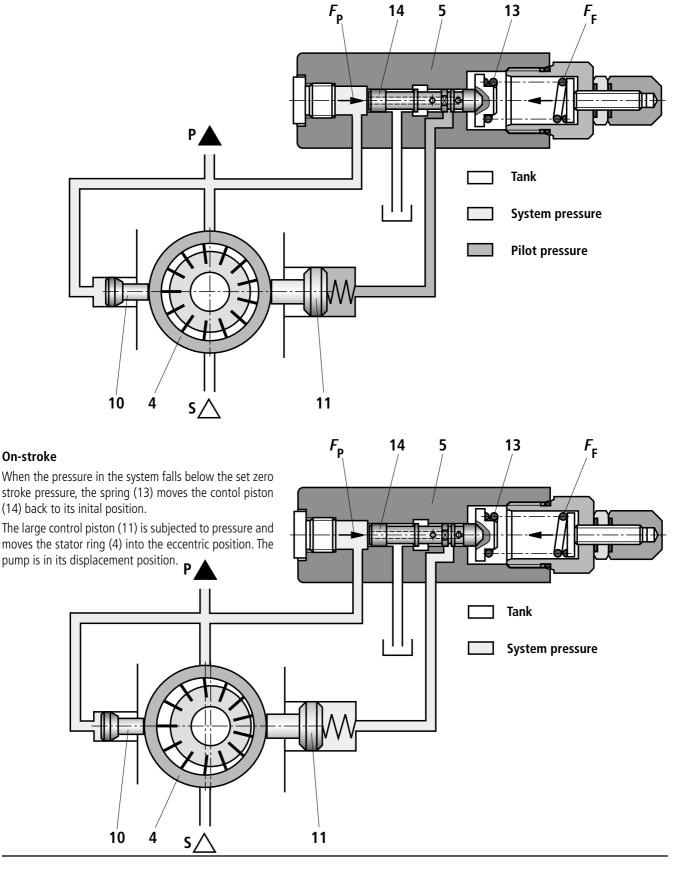
The chambers (8) which are required for the transport of the fluid are formed by the vanes (3), the rotor (2), the stator ring (4) and the control plates (9).

In order to ensure the pump function during commissioning, the stator ring (4) is held in the eccentric position (displacement position) by the spring (12) which is behind the large control piston (11).

Due to the rotation of the rotor (2), the chambers (8) increase in size and at the same time, fill with fluid via the suction channel (S). When the maximum chamber volume is reached, the chambers (8) are disconnected from the suction side. As the rotor (2) continues to rotate, they are connected to the pressure side and become smaller and press the pressure fluid into the system via the pressure channel (P).

Function

Off-stroke


If force $F_{\rm p}$, resulting from the product of pressure x area, exceeds the counter force $F_{\rm F}$ of the spring, the controller piston (14) is moved against the spring (13). In this way, the chamber behind the large control spool (11) is connected to tank and is thus unloaded.

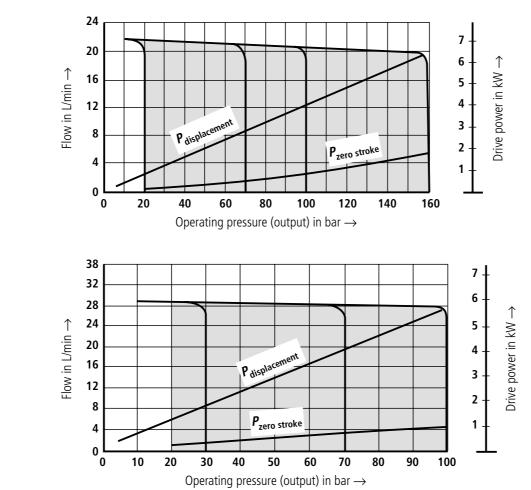
The small control piston (10), which is constantly under system pressure, moves the stator ring (4) towards the centre position, virtually

the zero position. The pump maintains the pressure, the flow decreases to zero, leakages are compensated for.

Power loss and heating of the fluid are kept at a low level.

The q_V -p-characteristic curve runs vertically and shifts in parallel as higher pressures are set.

Model			Pilot	oper	ated	variab	le disp	olacem	ient va	ane pi	ımp.	adjus	table	
Туре			PV7											
Mounting style			4-hc	ole fla	nge (1	to VDI	MA 24	560	part 1	and I	SO 3(019/2)	
Pipe connections			Threaded or SAE flange connection (dependent on build size)											
Installation			Optional, preferably horizontal (see page 21)											
Shaft loading			Radial and axial forces cannot be taken up											
Direction of rotation			Clockwise (viewed on the shaft end)											
Drive speed	900 to 1800													
Build size		BS	1	0		16		25	4	0	6	53	1(00
Nominal size	V _g	cm ³	14	20	20	30	30	45	45	71	71	94	118	150
Drive power ¹⁾	P _{max}	kW	6.3	5.8	8.5	6.8	13.7	10.2	20.5	16.5	33	20.9	51.5	33
Permissible drive torque	T _{max}	Nm	9	0	1	40	1	80	28	30	4	40	68	30
Max. flow ²⁾	q_{V}	L/min	21	29	29	43.5	43.5	66	66	104	108	136	171	218
Leakage flow at zero stroke (with operating pressure at outlet = p_{max})	$q_{\rm VL}$	L/min	2.7	1.9	4	2.5	5.3	3.2	6.5	4	8	5.3	11	7.3
Operating pressure, absolute – Inlet	bar	0.8	to 2.5							1				
– Outlet ³⁾	$\begin{array}{c c} - \text{Inlet} & \rho_{\min-\max} & \text{ba} \\ \hline - \text{Outlet}^{3)} & \rho_{\max} & \text{ba} \end{array}$							80	160	80	160	80	160	80
– Leakage outlet	$p_{\rm max}$	bar	2											
Pressure fluid for use up to 160 bar (nominal pressure)			HLP mineral oil to DIN 51 524 part 2											
Special pressure fluids ⁴⁾ (only with ordering detail "K") – Up to operating pressure p_{max} =			HET	G anc	HEES	S pres	sure fl	uids to	o VDN	1A 24	568			
- Up to operating pressure p_{max} =	80 bar		HLP mineral oil to DIN 51 524 part 2 (from 10 mm ² /s) HL mineral oil DIN 51 524 part 1											
Pressure fluid temperature range	θ	°C	- 10) to +	70, t	ake th	ne peri	mitted	visco	sity ra	nge i	nto ao	count	:!
Viscosity range	ν	mm²/s	Max	. 800	wher	n start	ing ur	nperat nder di nder ze	splace				i	
Degree of contamination		Max. 200 when starting under zero stroke conditions Max. permissible degree of contamination of the pressure fluid is to NAS 1638 class 9. We, therefore recommend a filter with a minimum retention rate of $\beta_{10} = 100$.												
Weight (with pressure controller)	т	kg	12	2.5		17	2	21	3	0	3	37	5	6
Change of flow (with one turn of the														
adjustment screw and $n = 1450 \text{ min}^{-1}$)	$q_{ m V}$	L/min	1	0		14	1	8	2	5		34	4	6


¹⁾ Measured at $n = 1450 \text{ min}^{-1}$; $p = p_{\text{max}}$; $v = 41 \text{ mm}^2/\text{s}$

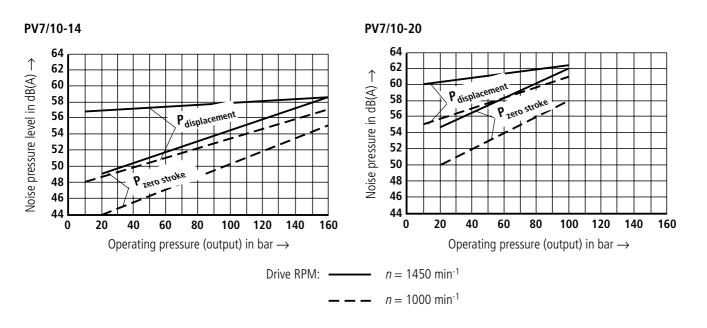
²⁾ The flow, due to manufacturing tolerances, can exceed the stated values by approx. 6 %

(measured at $n = 1450 \text{ min}^{-1}$; p = 10 bar; $v = 41 \text{ mm}^2/\text{s}$).

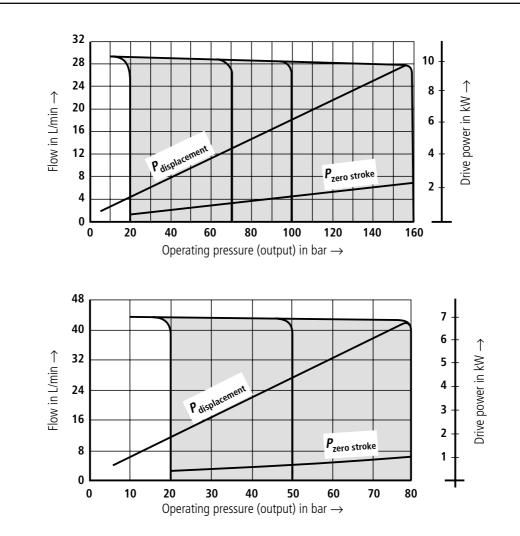
- ³⁾ The minimum settable pressure is approx. 20 bar, as standard 30 bar is pre-set by the factory.
- ⁴⁾ Further special pressure fluids on request (e.g. for systems in the food processing industry or for fire resistant fluids)!

PV7/10-14

PV7/10-20


Noise pressure level measured in an anechoic chamber to DIN 45 635 part 26. Distance of microphone - pump = 1 m.

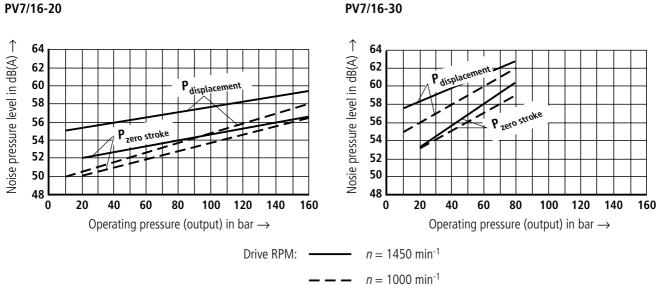
When ordering please take into account!


The pump adjustment is so carried out that the most favourable noise pressure level is relation to the largest zero stroke pressure is achieved.

It is, therefore vital that the required zero stroke pressure is stated on an order when this differs from the nominal pressure.

Please take into account the engineering notes on page 30.

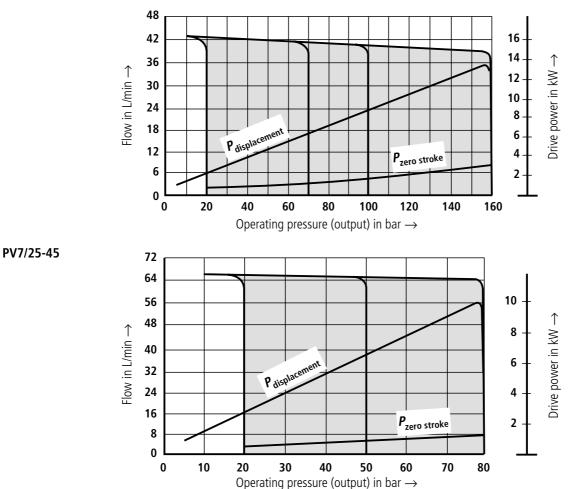
PV7/16-20


PV7/16-30

Noise pressure level measured in an anechoic chamber to DIN 45 635 part 26. Distance of microphone - pump = 1 m.

When ordering please take into account!

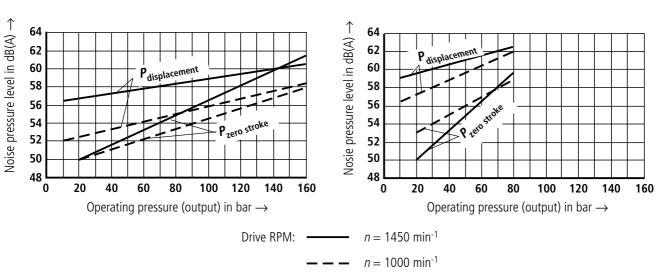
The pump adjustment is so carried out that the most favourable noise pressure level in relation to the largest zero stroke pressure is achieved. It is, therefore vital that the required zero stroke pressure is stated on an order when this differs from the nominal pressure.


Please take into account the engineering guidelines on page 30.

PV7/16-20

Characteristic curves (measured at $n = 1450 \text{ min}^{-1}$, $v = 41 \text{ mm}^2/\text{s}$ and $\vartheta = 50 \text{ °C}$)

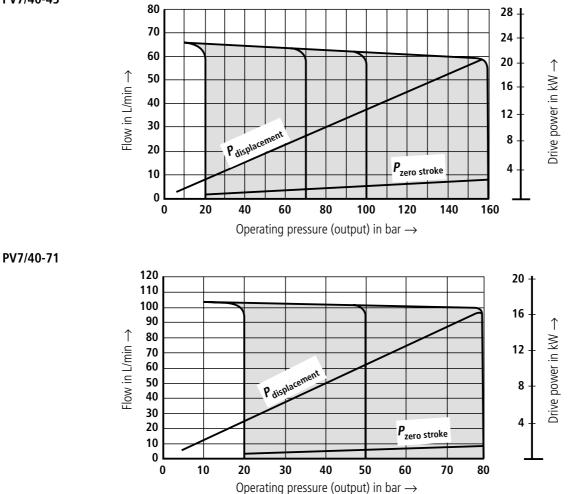
PV7/25-30


Noise pressure level measured in an anechoic chamber to DIN 45 635 part 26. Distance of microphone - pump = 1 m.

When order please take into account!

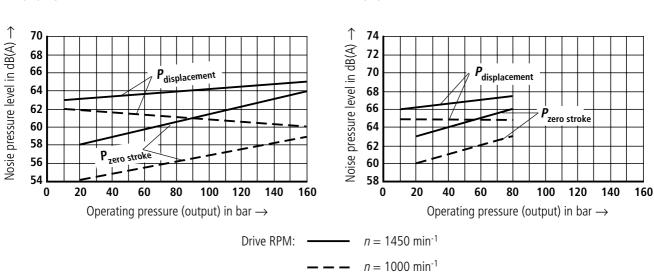
The pump adjustment is so carried out that the most favourable noise pressure level in relation to the largest zero stroke pressure is achieved.

It is, therefore vital that the required zero stroke pressure is stated on an order when this differs from the nominal pressure.


Please take into account the engineering guidelines on page 30.

PV7/25-45

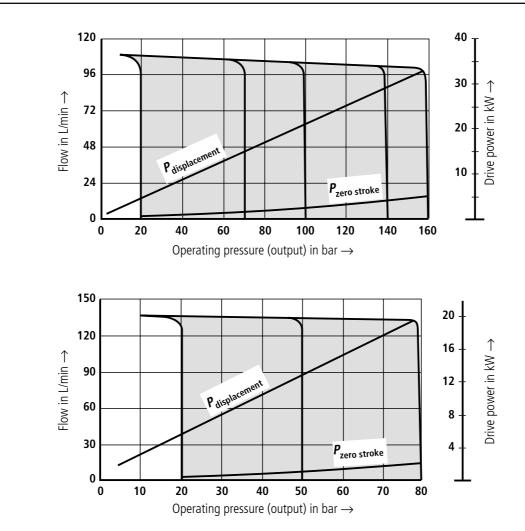
PV7/25-30


Noise pressure level measured in an anechoic chamber to DIN 45 635 part 26. Distance of microphone - pump = 1 m.

When ordering please take into account!

The pump adjustment is so carried out that the most favourable noise pressure level in relation to the largest zero stroke pressure is achieved.

It is, therefore vital that the required zero stroke pressure is stated on an order when this differs from the nominal pressure.

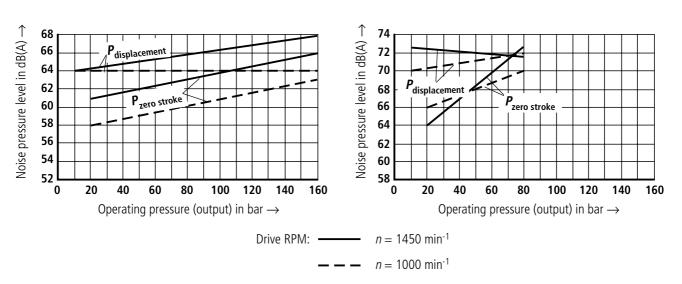

Please take into account the engineering guidelines on page 30.

PV7/40-71

PV7/40-45

PV7/63-71

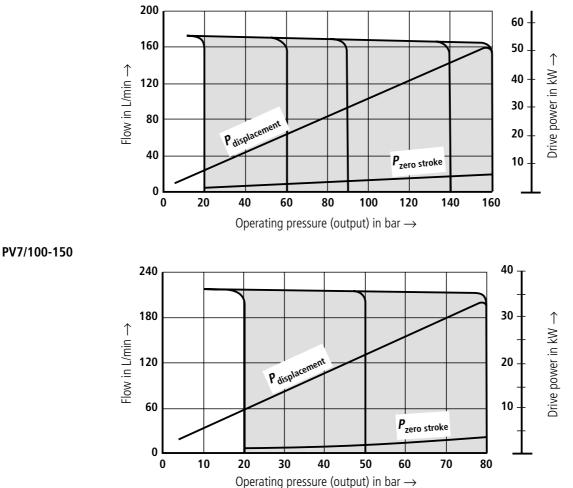
PV7/63-94


Noise pressure level measured in an anechoic chamber to DIN 45 635 part 26. Distance of microphone - pump = 1 m.

When ordering please take into account!

The pump adjustment is so carried out that the most favourable noise pressure level in relation to the largest zero stroke pressure is achieved.

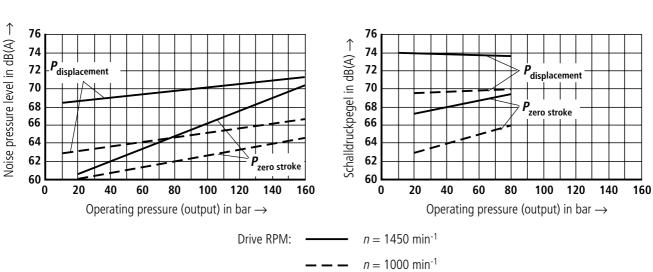
It is, therefore vital that the required zero stroke pressure is stated on an order when this differs from the nominal pressure.


Please take into account the engineering guidelines on page 30.

PV7/63-94

PV7/63-71

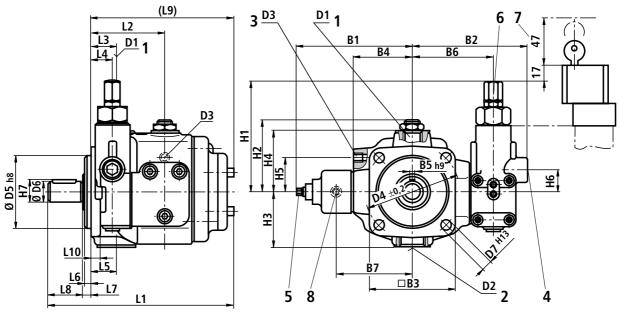
PV7/100-118


Noise pressure level measured in an anechoic chamber to DIN 45 635 part 26. Distance of microphone - pump = 1 m.

When ordering please take into account!

The pump adjustment is so carried out that the most favourable noise pressure level in relation to the largest zero stroke pressure is achieved.

It is, therefore vital that the required zero stroke pressure is stated on an order when this differs from the nominal pressure.


Please take into account the engineering guidelines on page 30.

PV7/100-150

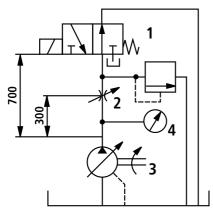
PV7/100-118

Single pump with C-, D- and N-controller

- 1 Pressure port ¹⁾
- 2 Suction port ²⁾
- 3 Leak-oil port
- 4 For controller with hydraulic remote control Ordering detail ...D... and flow controller Ordering detail ...N..., plug G 1/4, 12 deep
- 5 Flow adjustment
 - Adjustment guidelines:
 - Flow decreases when turned in a clockwise direction
 - and increases when turned in an anti-clockwise direction (see page 5)
 - The set flow should not be less than 50 % of the maximum value

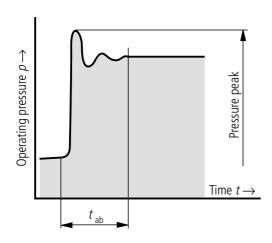
- **6** Pressure controller
 - Adjustment guidelines:
 - The operating pressure increases when turned in a clockwise direction
 - $-\,$ and decreases when turned in an anti-clockwise direction
- **Note:** The zero stroke pressure changes by approx. 19 bar for 1 turn of the adjustment screw.
- **7** The space required to remove the lock cover (the pressure can only be adjusted when the lock cover is removed)
- 8 Test point G 1/4, 12 deep

BS	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	В	1	B2		□ B 3	B4	B5 _{h9}	B6	B7		
10	193	78.5	26	22	26	7	8	36	149	9	130		125		96	65	6	90	88		
16	217	86	37	20	37	9	10	42	165	10	134.5		131		120	69	8	93	92		
25	229	86	34	20	38	9	10	42	177	10	140	140.7		7	120	75	8	99	98		
40	254,6	86	26.5	21.5	43	9	10	58	186.6	12	157	7.8	16	1 '	141.2	94	10	125	115.5		
63	279	99	39	34.5	51	9	10	58	211	13	163	3.7	165	5 '	141.2	100	10	130	121		
100	334	111	45.5	28.5	60.5	9	10	82	242	16	19	1.7	184	.5	200	121	12	149.	5 150		
BS	H1	H2	H3	H4	H5	H6	5 I	H7	D1 ¹⁾	D2	D2 ²⁾		3	D4	±0,2	Ø D5 _H	₁₈ Ø I	D6	D7 ^{H13}		
10	117	74	58	64	37	25	2	2.5	G 1/2	G	1	G	1/4	1	03	80	20	j6	9		
16	118.5	81.5	68	72	40	26.	5	28	G 3/4	G 1	1/4	G	G 3/8		25	100	25	j6	11		
25	118.5	91.5	92	80	40	26.	5	28	G 1	G 1	G 1 1/2		G 3/8		3/8 125		25	100	25	j6	11


SAE 1 1/2" G 1 G 1/2 32 _{k6} 118 105.5 89 45 35 160 125 14 40 94 26 SAE 2" 32 _{k6} 63 118 111.5 105 100 47 26 35 SAE 1 1/4" G 1/2 160 125 14 40 _{k6} 100 118 123.5 126 111 52 26 43 SAE 1 1/2" SAE 2 1/2" G 3/4 200 160 18

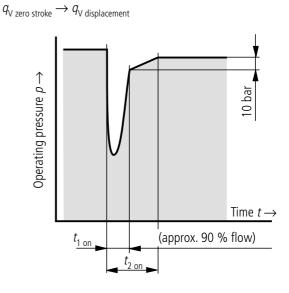
 Build sizes 10, 16, 25 and 40 Pipe thread "G..." to ISO 228/1 Build sizes 63 and 100 flange connection to SAE ²⁾ Build sizes 10, 16 and 25

Pipe thread "G..." to ISO 228/1


Build sizes 40, 63 and 100 flange connection to SAE

Test set-up

Off-stroke


 $q_{\rm V\ displacement}
ightarrow q_{\rm V\ zero\ stroke}$

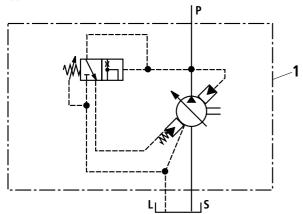
1 Directional valve (switching time 30 ms)

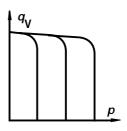
- 2 Throttle for adjusting the pressure when the pump is displacing
- **3** Hydraulic pump
- 4 Pressure measurement point

On-stroke

			Off-strok	e in ms (a	verage va	lues)		On-stroke in ms (average values)								
	Control times	20 →	q _{V disp} 160 bar		· q _{V zero stro} 80 bar	^{ke} 20 →	$\begin{array}{c c} q_{\text{V zero stroke}} \rightarrow q_{\text{V displacement}} \\ 160 \rightarrow 130 \text{ bar } 80 \rightarrow 60 \text{ bar } 40 \rightarrow 30 \text{ bar} \end{array}$									
		$t_{\text{off}} \mid \rho_{\text{max}}^{(1)} \mid t_{\text{off}} \mid \rho_{\text{max}} \mid t_{\text{off}} \mid \rho_{\text{max}}$				t _{1 on}	$t_{2 \text{ on}}$	t _{1 on}	$t_{2 \text{ on}}$	$t_{1 \text{ on}} \mid t_{2 \text{ on}}$						
	10-14	100	^{7 max}		- max	150	80	60	80		- 2 on	60	80			
	10-20	_	_	100	130	150	100	_	_	60	80	50	100			
	16-20	100	200	_	_	120	100	50	80	_	_	50	90			
es	16-30	_	_	100	140	150	110	_	_	50	80	50	100			
Build and nominal sizes	25-30	100	220	_	_	120	120	80	100	_	_	70	100			
nimc	25-45	_	_	100	150	120	120	_	_	80	100	80	130			
nd no	40-45	100	240	_	_	120	140	70	100	-	_	60	100			
ild aı	40-71	_	_	100	180	120	150	_	_	80	100	80	140			
Bu	63-71	150	220 ²⁾	_	_	150	180	80	120	_	_	100	140			
	63-94	-	-	200	150 ²⁾	220	150	_	_	120	150	130	210			
	100-118	200	220 ²⁾	-	-	250	200	100	150	-	-	150	250			
	100-150	_	_	250	150 ²⁾	280	150	_	_	150	200	180	280			

¹⁾ Permissible pressure peaks


²⁾ Pressure relief valve is required to limit pressure peaks

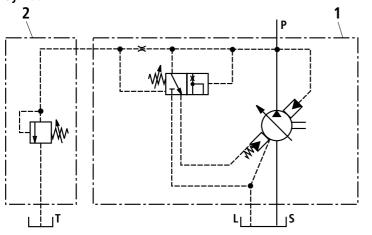

C-controller

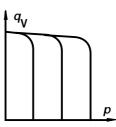
Pressure controller

With mechanical pressure adjustment, ordering detail ...**C0-**... (for the lockable version the ordering detail is ...**C3-**...)

Symbol

Ordering example:


1 Pump: PV7-1X/16-20RE01MC0-16 or PV7-1X/63-94RE07MC0-08


D-controller

Pressure controller

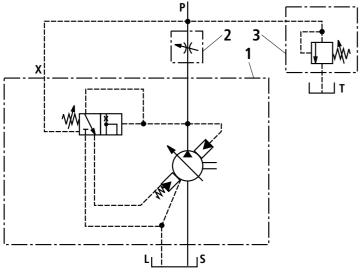
With hydraulic remote pressure adjustment, ordering detail ...D0-... (for the lockable version the ordering detail is ...D3-...)

Symbol

Ordering example:

- **1** Pump: PV7-1X/25-45RE01MD0-08
- **2** Optional pressure relief valve; must be ordered separately

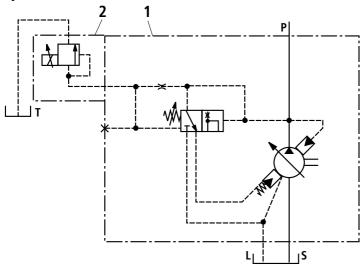
The remote control line between the controller and pressure relief valve (2) should not be longer than 2 m.

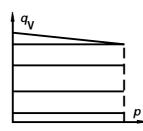

Note: The zero stroke pressure results from the pressure set at the pump and pressure relief valve. The remote control port must not be plugged as the pump will not de-stroke!

N-controller

Flow controller

With mechanical flow adjustment, ordering detailN0-... (for the lockable version the ordering code is ...N3-...)

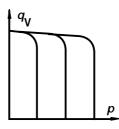

Symbol



E-controller (on request)

Pressure controller

With electrical remote pressure adjustment, ordering detail ...E0-... Symbol


Ordering example:

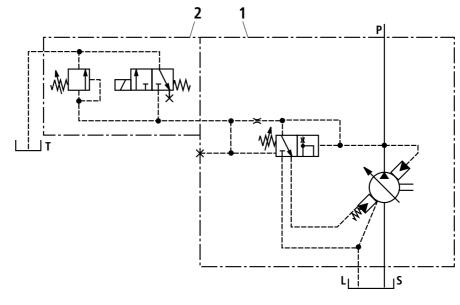
- **1** Pump: PV7-1X/16-20RE01MN0-16 or PV7-1X/63-94RE07MN3-08
- 2 Optional orifice (e.g. throttle to RE 27 219)
- **3** Optional pressure relief valve (this valve is necessary as, in this case, there is no control to zero stroke)

Items 2 and 3 must be ordered separately.

The control lines between the controller connection ${}_{\rm w}X''$ and the measurement orifice should not be longer than 1.5 m.

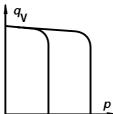
Pressure differential: approx. 13 bar

Ordering example:


- **1** Pump: PV7-1X/16-20RE01ME0-16
- 2 Pressure relief valve

W-controller

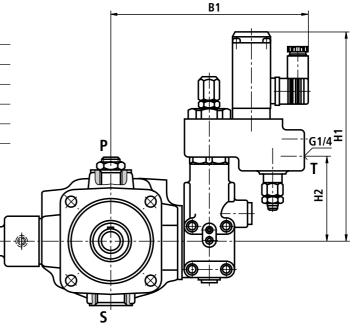
Pressure controller


With an electrically switchable 2-stage pressure control Ordering detail ... **W0-**...

Symbol

Ordering example:

- **1** Pump: PV7-1X/16-20RE01MW0-16
- **2.1** 3/2-way cartridge valve to RE 23 140, optionally normally open or normally closed
- **2.2** Pressure relief valve to RE 25 710



Unit dimensions

W-controller

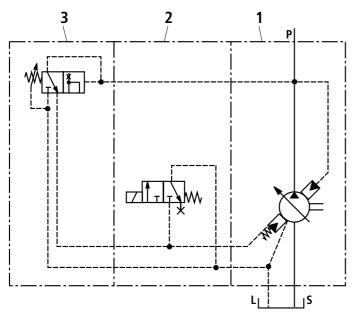
For further unit dimensions see page 12.

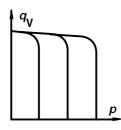
Build size	B1	H1	H2
10	189	187.5	77.5
16	192	189	79
25	198	189	79
40	224	188.5	78.5
63	229	188.5	78.5
100	248.5	188.5	78.5

(Dimensions in mm)

Hydraulic start-up assistance (K-plate)

Sandwich plate

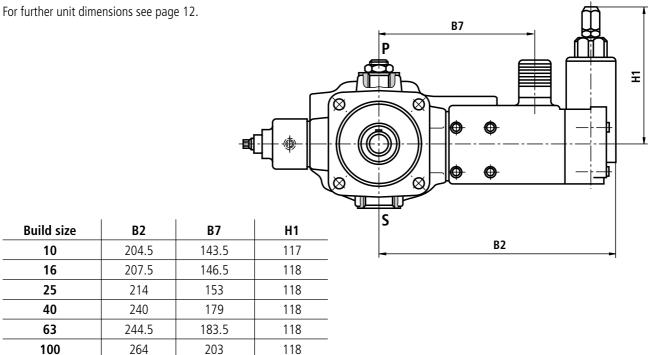

With an unloading valve for start-up at the lowest zero stroke pressure.


Zero stroke pressure is approx. 20 bar (application dependent) Ordering detail5-...

(for the lockable version the ordering detail is7-...)

Note: Not suitable for a 2-stage control!

Symbol


Ordering example:

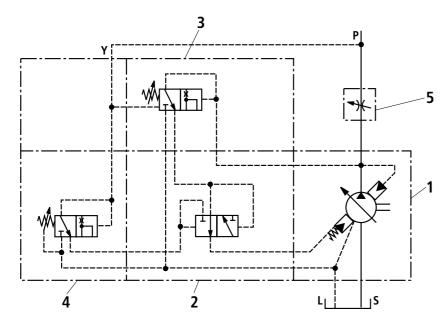
- PV7-1X/40-71RE37MC5-08 **1** Pump:
- 2 3/2-cartridge valve to RE 23 140 optionally Normally closed: Ordering detail: ... WG or Normally open: Ordering detail: ... WH or separate Shown is typeWG
- 3 Optionally C-, D- or N-controller

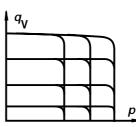
Unit dimensions

K-plate

(Dimensions in mm)

Flow-pressure controller (Q-plate)


Sandwich plate


For connecting a flow controller to a pressure compensated pump. Fitted with a standard flow controller

Ordering detail6-....

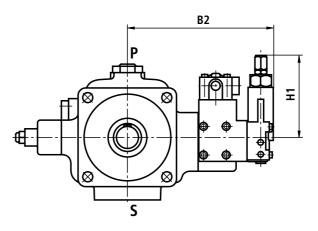
(for the lockable version the ordering detail is ...8-...)

Symbol

Ordering example:

- **1** Pump: PV7-1X/63-712RE07MC6-16
- **2** Sandwich plate for connecting the pressure controller and flow controller functions
- **3** Flow controller as described on page 14
- **4** Pressure controller optionally types C, D, E or W as described on pages 14 and 15
- **5** Optional measurement orifice (e.g. throttle to RE 27 219), must be ordered separately

The control line between the controller connection ",Y" and the measurement orifice should not be longer than 1.5 m.


(Dimensions in mm)

Unit dimensions

Q-plate

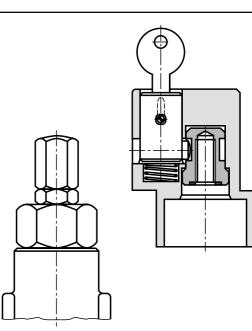
For further unit dimensions see page 12.

Build size	B2	H1
10	173.5	117
16	176.5	118.5
25	182.5	118.5
40	208.5	118
63	213.5	118
100	233	118

Lock

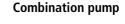
Material No.: 00844598

This lock is fitted to all pumps which have the controller option3...,7... or8....

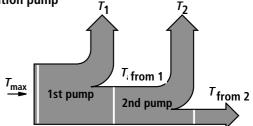

Functional description

After unlocking (by turning the key clockwise) the enire lock cover can be removed from the control. The control adjuster is then accessible.

To lock, the lock cover is placed over the control adjuster and then pressed home, the lock cylinder is pressed down and the key turned in an anti-clockwise direction.


A lock can be fitted to a standard pump by,

- Unscrewing the domed nut from the control adjuster.
- Fitting the nut which contains the lock.
- Fitting the lock cover as described in the functional description.



Engineering guidelines for combination pumps

- The PV7 pumps are, as standard, capable of being combined.
 Each pump is fitted with a splined second shaft end.
- When operating the PV7 pump, as a fixed displacement unit, the fixed displacement unit must be the rear pump.
- The general technical data is the same as with the single pumps (see page 5).
- The pump with the higher load (pressure x flow) should be the first pump stage.
- When combining several pumps, the torques produced can reach excessively high values.
 The sum of the torques must not exceed the permissible values
- Combination parts have to be a separate item on an order.
- The necessary seals and screws are included in the combination kit.

(see table)

P2V7/25-30... + V7/25-30...

PV7	Max. per	rmissible
Build size	Drive torque T _{max}	Output torque T _{from max}
10	90	45
16	140	70
25	180	90
40	280	140
63	440	220
100	680	340

from max

Calculation exaple:

Single pump

/_{max}

V	=	Displacement in in cm ³
$\eta_{\mathrm{hydrmech.}}$	=	Hydraulic-mechanical efficiency
Ţ		Torque in Nm
∆ p	=	Pressure in bar

Combination pump: Required max. pressure:

ure: $p_n = 160 \text{ bar}$

$$T = \frac{\Delta \rho \bullet V \bullet 0.0159}{\eta_{\rm hydr.-mech.}} ~~({\rm Nm})$$

$$T_{1.2} = \frac{160 \bullet 30 \bullet 0.0159}{0.85}$$
(Nm)

$$T_{1.2} = 90 \text{ Nm} \le T_{\text{from max}}$$

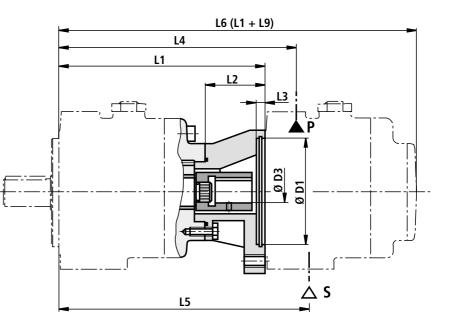
$$T = T_1 + T_2 = 180 \text{ Nm} \le T_{\text{max}}$$

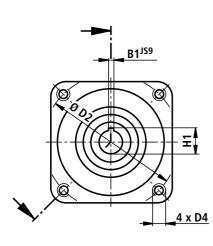
The combination pump can be operated on the basis of the calculated data.

Combination pump possiblities

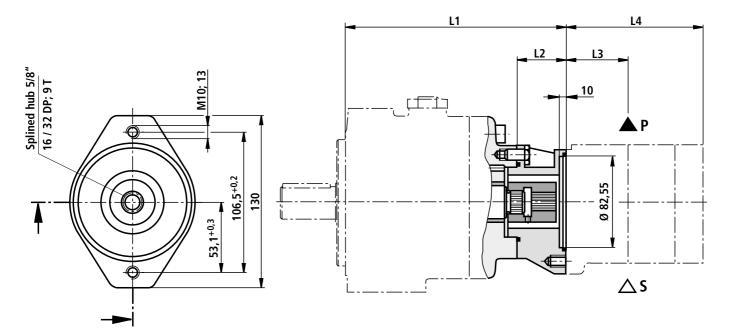
All of the type PV7 pumps are capable of being combined. Pumps with an E-shaft have a through drive.

The possible pump combinations, the Material Nos. and the required combination kits are contained within the following table.


Rear pump	Front pump										
	PV7-1X/ 10	PV7-1X/ 16/25	PV7-1X/ 40/63	PV7-1X/ 100							
PV7-1X/06RA01M	00540811	00540812	00540814	00543034							
PV7-1X/10RE01M	00540811	00540812	00540814	00543034							
PV7-1X/16RE01M	_	00540813	00540815	00543035							
PV7-2X/20RA01M	_	00540813	00540815	00543035							
PV7-1X/25RE01M	_	00540813	00540815	00543035							
PV7-1X/40RE37M	_	-	00540816	00543036							
PV7-1X/63RE07M	_	-	00540816	00543036							
PV7-1X/100RE07M	_	-	_	00543037							
PGF1-2X/RH01VU2	00857584	00857585	_	_							
PGF2-2X/RJVU2	00541209	00541210	00541203	00544959							
PGF3-3X/RJVU2	_	00888267	00880623	00880624							
PGP2-2X/RJ20VU2	00541209	00541210	_	00544959							
PGP3-3X/RJVU2	—	00888267	00880623	00880624							
PGH2-2X/RRVU2	00541209	00541210	00541203	00544959							
PGH3-2X/RRVU2	00541209	00541210	00541203	00544959							
PGH4-2X/RRVU2	—	-	00876578	00876576							
PVV/Q1/2-1X/RJ15	—	00888267	00880623	00880624							
PVV/Q4/5-1X/RJ15	—	-	00876023	00875983							
1PF2G2-4X/RR20MR	00541209	00541210	00541203	00544959							
1PF1R4-1X/0,402,00WG	00541204	00541205	_	_							
1PF1R4-1X/1,6020,00RG	00541214	-	_	_							
1PF1R4-1X/1,6020,00RA	-	00541207	00541208	00543767							
A10VSO10U	00541209	00541210	00541203	00544959							
A10VSO18U	00541209	00541210	00541203	00544959							
A10VO28S	-	00888267	00880623	00880624							
A10VO45S	_	-	-	00875983							

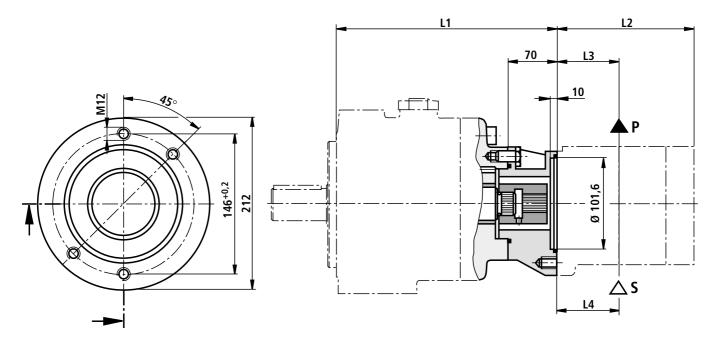

Ordering details for combination pumps

	P2	V7	/ 10	00-1	50	C0	+	V7/	1	00-1!	50	C 0	R	E	07	+		0	7	E4	
Double= IFirst pumpseriesFirst pump nFirst pump cSecond pumSecond pum	omina ontrol p serie p nom	ler es iinal si	ze																	CO	First pump mounting flange Second pump nnection port Second pump shaft version if required) ¹⁾
Second pum	p cont	roller															-	First	pur	np co	nnection port
																		Fi	rst	pump	shaft version
1) For PGF2	and F	GF3												-					D	irectio	on of rotation


For PGF2 and PGF3

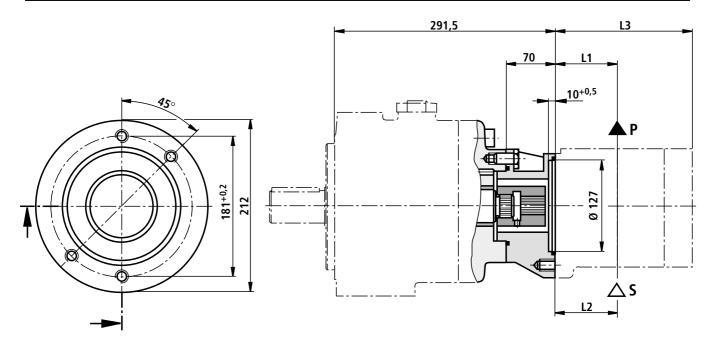
Triple and quadruple pumps are coded analogue!

	1	1	I	ı		1	1					1	
1st pump BS	2nd pump BS	L1	L2	L3	ØD1	ØD2	ØD3	D4	H1	B1	L4	L5	L6
10	06	182	50	8	80	103	20	M8	22.8	6	199	202.5	283
	10	182	50	8	80	103	20	M8	22.8	6	208	208	331
16	06	200	55	8	80	103	20	M8	22.8	6	217	220.5	301
	10	200	55	8	80	103	20	M8	22.8	6	226	226	349
	16	208	63	10	100	125	25	M10	28.3	8	245	245	373
25	06	212	55	8	80	103	20	M8	22.8	6	229	232.5	313
	10	212	55	8	80	103	20	M8	22.8	6	238	238	361
	16	220	63	10	100	125	25	M10	28.3	8	257	257	385
	20	220	63	10	100	125	25	M10	28.3	8	245	245	354
	25	220	63	10	100	125	25	M10	28.3	8	254	258	397
40	06	221.6	55	8	80	103	20	M8	22.8	6	238.6	242.1	322.6
	10	221.6	55	8	80	103	20	M8	22,8	6	247.6	247.6	370.6
	16	229.6	63	10	100	125	25	M10	28.3	8	266.6	266.6	394.6
	20	229.6	63	10	100	125	25	M10	28.3	8	254.6	254.6	363.6
	25	229.6	63	10	100	125	25	M10	28.3	8	263.6	267.6	406.6
	40	246.6	80	10	125	160	32	M12	35.3	10	273.1	289.6	433.2
63	06	244.5	55	8	80	103	20	M8	22.8	6	261.5	265	345.5
	10	244.5	55	8	80	103	20	M8	22.8	6	270.5	270.5	393.5
	16	252.5	63	10	100	125	25	M10	28.3	8	289.5	289.5	417.5
	20	252.5	63	10	100	125	25	M10	28.3	8	277.5	277.5	386.5
	25	252.5	63	10	100	125	25	M10	28.3	8	286.5	290.5	429.5
	40	269.5	80	10	125	160	32	M12	35.3	10	296	312.5	456.1
	63	269.5	80	10	125	160	32	M12	35.3	10	308.5	320.5	480.5
100	06	276.5	55	8	80	103	20	M8	22.8	6	293.5	297	277.5
	10	276.5	55	8	80	103	20	M8	22.8	6	302.5	302.5	425.5
	16	284.5	63	10	100	125	25	M10	28.3	8	321.5	321.5	449.5
	20	284.5	63	10	100	125	25	M10	28.3	8	309.5	309.5	418.5
	25	284.5	63	10	100	125	25	M10	28.3	8	318.5	322.5	461.5
	40	301.5	80	10	125	160	32	M12	35.3	10	328	344.5	488.1
	63	301.5	80	10	125	160	32	M12	35.3	10	340.5	352.5	515.5
	100	321.5	100	10	160	200	40	M16	47.3	12	367	382	563.5

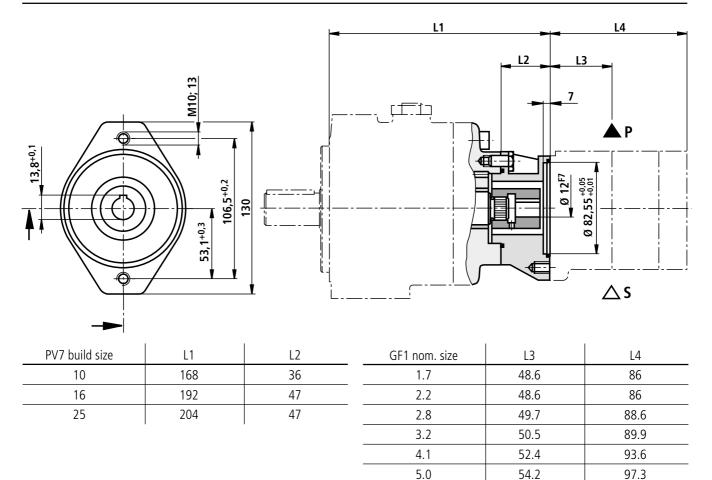

PV7 build size	L1	L2
10	168	36
16	192	47
25	204	47
40	213.6	47
63	236.5	47
100	268.5	47

PGF2 / PGP2 nom. size	L3	L4	G2-4X nom. size	L3	L4
006	65	116	004	42.75	88.5
008	67	119.5	005	42	93.5
011	69.5	125	008	45.75	93.5
013	72	130	011	48	98.5
016	74.5	135	014	50	103.5
019	77.5	141	016	49	108.5
022	80.5	147	019	51	113.5
			022	56	118.5
PGH2 nom. size	L3	L4			
003	51	102.5	A10VSO nom. size	L3	L4
005	54	110	010	148 ¹⁾	164; 179 ²⁾
006	55.5	112.5	018	145	195
008	57	116			

PGH3 nom. size	L3	L4
011	60	121.5
013	62.5	126.5
016	65	131.5

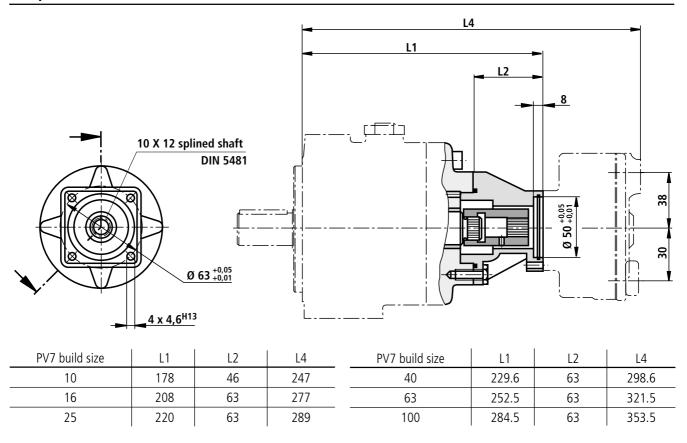

¹⁾ Axial connection port

²⁾ Controller dependent (see RE 92 713)

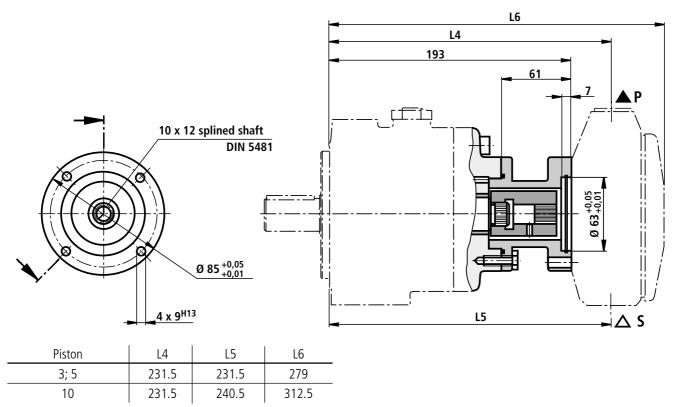


PV7 build size	L1
16	215
25	227
40	237
63	259.5
100	291.5

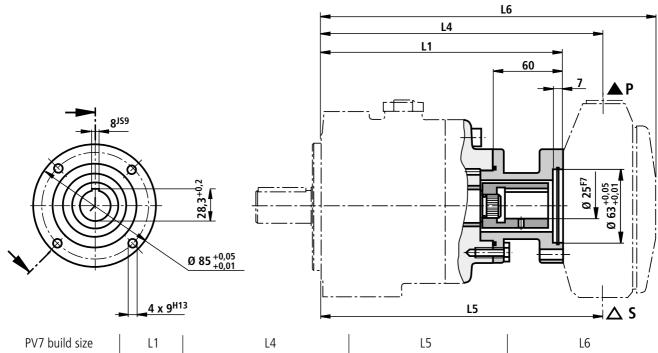
PGF3 / PGP3 nom. size	L2			L3; L4	_	PGH4 nom. size	L2			L3; L4
020	144.5			79.5		020	147			70.5
022	146.5	146.5		80.5	_	025	152			73
025	150.5			82.5		032	159			76.5
032	159.5			87	_	040	166			80
040	169.5		92			050	176			85
050	182.5		98.5			063	190			92
						080	204			99
PVV.UMB	L2	L3	(P)	L4 (S)		100	224			109
PVV1	156	1	33	63,5						
PVV2	163	38	3.1	120.6		A10VO nom. size	L2		L3	L4
				•	_	028	194	16	54.5	164.5



	L1	L2	L3
PVV4UMC	38.1	125.5	186
PVV5UMC	42.9	153	216
A10V045	184	184	219


Pump combinations P2V7... + R4-Mini

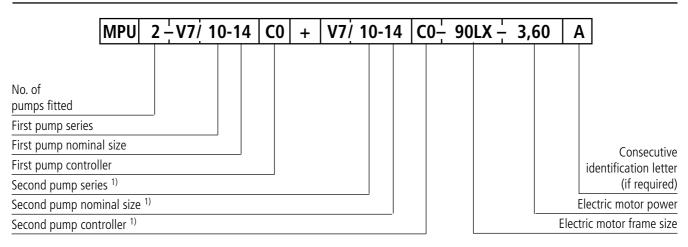
(Dimensions in mm)



Note: The suction connection of the R4 pump should lie above the pressure port!

PV7/10... + R4-Standard

PV7/16... to PV7/100... + R4-standard


LI	L4		L:	LD		LO	
	3/5 pistons	10 pistons	3/5 pistons	10 pistons	3/5 pistons	10 pistons	
205	243.5	243.5	243.5	252.5	291	324.5	
217	255.5	255.5	255.5	264.5	303	336.5	
226.6	265.1	265.1	265.1	274.1	312.6	346.1	
249.5	288	288	288	297	335.5	369	
281.5	320	320	320	329	367.5	401	
	217 226.6 249.5	3/5 pistons 205 243.5 217 255.5 226.6 265.1 249.5 288	205 243.5 243.5 217 255.5 255.5 226.6 265.1 265.1 249.5 288 288	3/5 pistons10 pistons3/5 pistons205243.5243.5243.5217255.5255.5255.5226.6265.1265.1265.1249.5288288288	3/5 pistons10 pistons3/5 pistons10 pistons205243.5243.5243.5252.5217255.5255.5255.5264.5226.6265.1265.1265.1274.1249.5288288288297	3/5 pistons10 pistons3/5 pistons10 pistons3/5 pistons205243.5243.5243.5252.5291217255.5255.5255.5264.5303226.6265.1265.1265.1274.1312.6249.5288288288297335.5	

Motor-pump drive unit

The electric motor and vane pump are connected **without** a coupling and pump mounting bracket. This results in a very cost effective and compact unit.

The motor design which has a hollow shaft with key-way makes it possible to utilise standard pumps.

Ordering details

¹⁾ If required

Ordering example: MPU1-V7/10-14CO-90L-2,20

Note with reference to the EC machinery guidelines 89/392 EWG, annex II, section B:

The UPP drive units are manufactured in accordance to the harmonised standards EN 982, EN 983, DIN EN 292 and DIN EN 60 204-1.

Commissioning is not permitted until it has been proven that the machine into which the UPP assembly is to be fitted complies with the requirements stated in the EC guidelines.

Selection table:

Electric motor

Electric motor build size	90SX	90L	90LX
Power in KW	0.75	2.20	3.60
Pump build size	Material No. of the available motor variants		
PV7/10	00892349	00892361	00892369

The nominal powers stated in the above table are valid for continuous operation to VDE 0530 at a frequency of 50 Hz, and a cooling medium temperature of 40 $^{\circ}$ C at a height up to 1000 m above sea level.

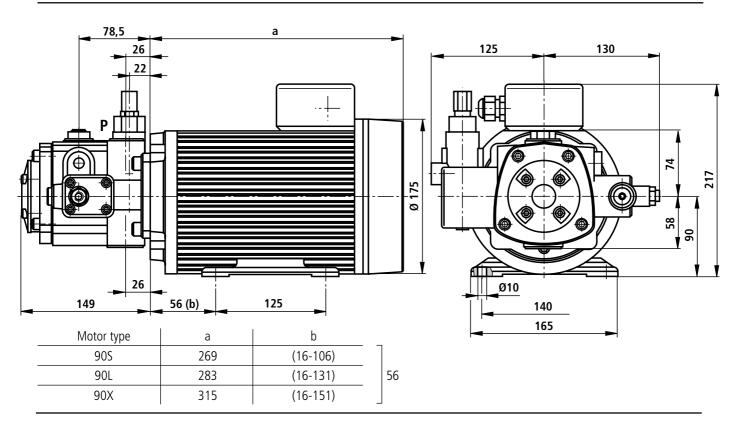
MPU-unit

Electric motor build size	90SX	90L	90LX
Power in KW	0.75	2.20	3.60
PV7/10-14C0	00979226	00979227	00979228
PV7/10-20C0	_	00979225	00977693

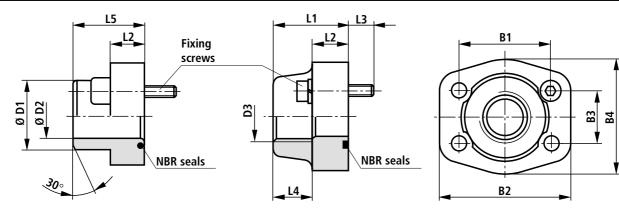
Technical data: Electric motor (for applications outside these parameters, please consult us!)

		Surface cooled, 3-phase with squirrel cage	
Frame type			B3 with hollow shaft and mounting flange
Electrical power connection			Pg-fittings and earth in the terminal box
Insulation			Insulation class F
Protection		IP55 to VDE 0530	
No. of poles			4
Voltage to DIN IEC 38		V	Δ 230 / Y400 at 50 Hz; Δ 266 / Y460 at 60 Hz
Frequency		Hz	50 or 60
RPM	At 50 Hz	min ⁻¹	1500
	At 60 Hz	min ⁻¹	1800
Installation			Only horizontal

Operational switching of the AC motors


	Type of	Operating	For direct	For Y Δ
	winding	voltage	starting	starting
	Volt	Volt	Volt	Volt
		220240	220240 Δ	
50 Hz	230 Δ / 400 Y			220240Δ
		380420	380420 Y	

Motors with a winding for 50 Hz and connected to a 60 Hz supply


Conversion factor at 60 Hz				
Nom. RPM	Nom. power			
n _{nom}	P _{nom}			
1.2	1.0			
1.2	1.0			
1.2	1.15			
1.2	1.2			

Unit dimensions: MPU

(Dimensions in mm)

SAE-connecting flanges, max. operating pressure 210 bar (3000 PSI)

With welded connection to AB-E 22-15

With threaded connection

The Material No. includes the flange, O-ring and fixing screws. Pipe threads $\ensuremath{,} G''$ to ISO 228/1

				Material No.						For pump type			
NS	Sealing material			Welded connection			Threaded connection			Suction port			Pressure port
1 1/4"	NBR			00012946			0014153			-			PV7/63
1 1/2"	NBR			00013501			00014827			PV7/40			PV7/100
2"	NBR			00013502			00014829			PV7/63			-
2 1/2"	NBR			00013503			00024205			PV7/100			_
											I		
NS	B1	B2	B3	B4	ØD1	ØD2	D3	L1	L2	L3	L4	L5	Fixing screws
1 1/4"	58.7	79	30.2	68	38	30	G 1 1/4	41	21	18	22	42	M10-8.8
1 1/2"	69.9	95	35.7	76	42	36	G 1 1/2	44	25	18	24	57	M12-8.8
2"	77.8	102	42.9	90	61	49	G 2	45	25	18	26	46	M12-8.8
2 1/2"	88.9	114	50.8	104	76	62	G 2 1/2	50	25	18	30	50	M12-8.8

Engineering guidelines

Extensive guidelines and suggestions can be found in the Hydraulic Trainer, volume 3, RE 00 281, "Projecting and designing hydraulic systems".

When applying vane pumps, we recommnend that the following guidelines are particulary to be taken into account:

Technical data

All of the technical data stated are dependent on the manufacturing tolerances and are valid for certain conditions. Please take into account that due to this a small spread is possible and a change in the conditions (e.g. viscosity) can lead to the technical data being affected.

Characteristic curves

Characteristic curves for flow and absorbed power. Please take the maximum possible application data into account when selecting the electric motor.

Noise/noise pressure level

The values stated on pages 6 to 11 for the noise pressure level have been measured in accordance to DIN 45 635 part 26.

This means that only the noise emission from the pump is shown. External influences (such as place of installation, pipework, etc.) are eliminated. The values stated always refer to one pump.

If, for example, two pumps of the same size with the same loading are in use, then the noise level increases in accordance to the following formula

$$L_{\rm s} = 10 \, \text{lg} \, (10^{0,1 \cdot \text{L1}} + 10^{0,1 \cdot \text{L2}})$$

 $L_{\Sigma} = \text{total level}$

 $L_1 \dots L_i$ = noise pressure level of a single pump

Example: PV7/16 + PV7/16

p = 120 bar

 $L_1 = 56 \, dB(A)$

$$L_2 = 56 \, \text{dB(A)}$$

 $L_{\Sigma} = 10 \log (10^{0,1 \cdot 56} + 10^{0,1 \cdot 56})$

= 59.01 dB(A)

Commissioning

Air bleeding

- All PV7 vane pumps are self-priming.
- Before commissioning the pump must be bled to protect it from damage.
- When commissioning for the first time, we recommend that the housing is filled via the leakage connection. Take into account the filter rating! This increases the service life and prevents wear in the case of unfavourable installation conditions
- If the pump does not supply fluid free of bubbles after approx.
 20 seconds then the system should be rechecked. After reaching the operating values check the pipe connection for leaks. Check the operating temperature.

Commissioning

- Check to see whether the system has been carefully and cleanly assembled.
- Take into account the direction of rotation arrows on the pump and motor.
- Start up the pump without load and permit it to supply fluid for a few seconds without pressure so that adequate lubrication in ensured.
- Under no circumstances run the pump without fluid!

Attention: The power unit design and the influences at the pumps final place of use result in the fact, in general, that the noise pressue level is 5 to 10 dB(A) higher than the value of the pump on its own.

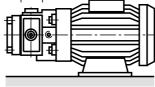
Leakage fluid

Part of the frictional heat is dissipated via the leakage fluid from the pump. The leakage fluid should be returned directly to the oil reservoir with a low pipe back pressure. The distance between the leak line and the suction line must be large enough so that the returning leakage fluid cannot be directly taken up by the pump. The average leakage flow via the external port is shown on page 5. These values are **not** to be used for dimensioning the reservoir. For the selection of the reservoir size, the zero stroke power is the relevant value (see pages 6 to 11).

Leakage fluid cooler

The values stated on page 5 for the external leakage fluid are average values for continuous operation.

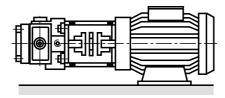
When the pump goes off-stroke the leakage fluid flow briefly increases by the control oil flow. Reductions in cross-section, long leak lines and also a leakage fluid cooler can lead to umpermissibly high pressure peaks. By means of suitable measures, e.g. a bypass check valve, it must be ensured that the leakage fluid pressure ($p_{max} = 2$ bar) does not exceed the permissible values. There is otherwise the danger of the shaft seal being damaged.


▲ Important guidelines

- Adjustment, service and maintenance of the pump must only be carried out by authorised, trained and instructed personnel!
- Only use original Bosch Rexroth spare parts!
- The pump must only be operated with the permitted data.
- The pump must only be used when it is in a good condition!
- When carrying out any work on the pump (e.g. removing and refitting) the system must be depressurised and isolated from the mains supply!
- Conversion and modifications done by yourselves which affect the safety and function are not permitted!
- Protection features (e.g. coupling guard) are to be fitted!
- Protection features which are present must not be removed!
- The general safety and accident prevention regulations must be adhered too!

Installation guidelines

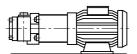
Drive: Variant 1


The UPP drive unit (is supplied complete by ourselves) Electric motor and pump

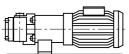
- Very short design
- Cost effective (coupling and pump mounting bracket are not required)
- No assembly necessary

Drive: Variant 2

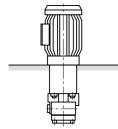
Electric motor + pump mounting bracket + coupling + pump



▲ Attention! – Radial and axial forces which act on the pump drive shaft are not permitted! → Motor and pump must be exactly aligned! → Use a flexible drive coupling

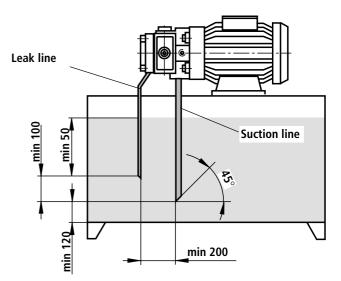

Installation

- Horizontal is preferred


B3

B5

V1


Fluid reservoir

- Match the usable volume of the reservoir to suit the operating conditions.
- Attention! The permissible fluid temperature must not be exceeded
 - \rightarrow A cooler may have to be provided!

Pipes and connections

- Cut-off at an angle of 45°.
- Remove protective plugs from the pump.
- We recommend the use of seamless precision steel pipes to DIN 2391 and removable pipe couplings.
- Match the inside diameter of the pipe to the connections.
- Carefully clean pipe and fittings before assembly minimum distance to the bottom of the reservoir is 120 mm.

Pipework suggestion (dimensions in mm)

- Lay the leakage line so that the pump **cannot** drain!
- Do **not** pipe with pump **without** a controller!
- Leak and return line fluid **must under no circumstances** be immediately taken up by the pump!

Filter

 Use return and pressure filters where possible.
 (suction filter only in conjunction with an under pressure switch/ clogging indicator)

Pressure fluid

- Please take into account our specifications stated in catalogue sheet RE 07 075.
- We recommend brand name pressure fluids.
- Different types of pressure fluids must not be mixed as decomposition and a reduction in lubricity may result. Take the manufacterer's specifications into account!
- Depending on the operating conditions the pressue fluid must be changed at regular intervals. It is necessary to clean the fluid reservoir of any residues.

Bosch Rexroth AG Industrial Hydraulics

D-97813 Lohr am Main Zum Eisengießer 1 • D-97816 Lohr am Main Telefon 0 93 52 / 18-0 Telefax 0 93 52 / 18-23 58 • Telex 6 89 418-0 eMail documentation@boschrexroth.de Internet www.boschrexroth.de

Bosch Rexroth Limited

Cromwell Road, St Neots, Cambs, PE19 2ES Tel: 0 14 80/22 32 56 Fax: 0 14 80/21 90 52 E-mail: info@boschrexroth.co.uk The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. It must be remembered that our products are subject to a natural process of wear and ageing.