RE 22 058/02.03
Replaces: 11.02

2/2-, 3/2- and 4/2-way directional poppet valves, solenoid operated Type M-.SEW 6

Nominal size 6

Series 3 X
Maximum operating pressure 420/630 bar
Maximum flow 25 L/min

Features

- Direct operated directional poppet valve, solenoid operated
- Porting pattern to DIN 24340 Form A, without locating pin hole (standard)
- Porting pattern to ISO 4401 and CETOP-RP 121 H, with locating pin hole, (ordering detail .../60 at the end of the valve type code)
- Closed port is leak-free
- Switching is ensured even after long periods of being under pressure
- Air gap DC solenoids with removable coil (AC voltages possible via a rectifier)
- Solenoid coil can be rotated by 90°
- Individual electrical connection
- With protected hand override, optional
- Inductive limit switch (contanct and contactless), optional, see page 10

Further preferred types and standard units are to be found in the EPS (Standard Price List).

 No code $=\quad$ NBR seals $\mathbf{V}=\quad$ FKM seals (other seals on request)
Attention! The compatibility of the seals and pressure fluid has to be taken into account! No code $=\quad$ Without cartridge check valve, without throttle insert $\mathbf{P}=\quad$ With cartridge check valve B12 = Throttle Ø 1.2 mm B15 = Throttle Ø 1.5 mm B18 = Throttle Ø 1.8 mm Throttle Ø 2.0 mm Throttle Ø 2.2 mm

Accessories

Inductive limit switch see page 10 and catalogue sheet RE 24830
No code =
Without limit switch
QMAG24 = Switched position „a" is monitored
QMBG24 = Switched position „b" is monitored

Electrical connection

K4 ${ }^{1 ; 2)}=$
Without plug-in connector, individual connection with component plug
to DIN EN 175 301-803

N9 $=$	With protected hand override
No code $=$	Without hand override

Note: Other types of actuators (e. g pneumatic, hydraulic, rotary knob, rotary knob with lock, plunger, lever, roller lever) on request!

1) Plug-in connectors must be ordered separately (see page 11).
2) For the connection to an AC supply a $D C$ solenoid must be used which is controlled via rectifier (see table on the left). For individual connections a large plug-in connector with integrated rectifier can be used (separate order, see page 11).
3) Locating pin 3×8 DIN EN ISO 8752, Material No. R900056944 (separate order)

Preferred types (readily available)

| Material No. | Type | | Material No. | Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R900050514 | M-3SEW 6 C3X/420MG205N9K4 | | R900050515 | M-3SEW 6 U3X/420MG205N9K4 |
| R900566273 | M-3SEW 6 C3X/420MG24N9K4 | | R900566283 | M-3SEW 6 U3X/420MG24N9K4 |

Plug-in connectors to DIN EN 175 301-803 and ISO 4400 for component plug "K4"

For further plug-in connectors see RE 08006					
		Material No.			
Valve side	Colour	Without circuitry	With indicator light $12 \ldots 240 \mathrm{~V}$	With rectifier $12 \ldots 240 \mathrm{~V}$	With indicator light and Z-diode protective circuit 24 V
a	Grey	R900074683	-	-	-
a/b	Black	-	R900057292	R900313933	R900310995

Function, section: 2/2-, 3/2-way poppet valve

General:

The type M-SEW directional valve is a solenoid operated directional poppet valve. It controls the start, stop and direction of a flow. It basically consists of a housing (1), the solenoid (2), the hardened valve system (3) and the ball(s) (4) as the closing element.

Basic principle:

In the initial position the ball (4) is pressed onto the seat by the spring (9), and in the switched position by the solenoid (2). The solenoid (2) force acts via the lever (6) and the ball (7) on the actuator pin (8), which is sealed on two sides. The chamber between the two sealing elements is connected with port P. The valve system (3) is thereby pressure balanced with regard to the actuating forces (solenoid or return spring). The valves can therefore be used up to a pressure of 630 bar.

Note:

- The 3/2-way poppet valves have a "negative switching overlap". Therefore port T must always be connected. This means that during the switching process - from the start of opening one valve seat to the closing of the other seat - all of the ports $\mathrm{P}-\mathrm{A}-$ T are connected with each other. This, however takes place in such a short space of time that in most applications it is irrelevant.
- The hand override (10) makes it possible to switch the valve without energising the solenoids.
- Care has to be taken to ensure that the stated maximum flows are not exceeded! If necessary a cartridge throttle for flow limitation has to be fitted (see below).

Type M-2SEW 6 N...

The following possibilities are obtainable via the seat orientation:

	2/2-way poppet valve	3/2-way poppet valve
Symbol		
Initial position	P and T connected	P and A connected, T closed leak-free
Switched position	P closed leak-free	P closed leak-free, A and T connected
Symbol	"N"	
Initial position	P closed leak-free	P closed leak-free, A and T connected
Switched position	P and T connected	P and A connected, T closed leak-free

Cartridge throttle

The use of the cartridge throttle is necessary when, due to operational conditions during the switching process, flows can occur that exceed the valve performance limits.
Examples:

- Accumulator operation,
- Use as a pilot valve with internal pilot oil supply.

3/2-way poppet valve

The cartridge throttle is fitted into port P of the poppet valve.
4/2-way poppet valve (see page 4) The cartridge throttle is fitted into port P of the plus-1 plate.

Cartridge check valve

The cartridge check valve allows free flow from P to A and provides leak-free closure from A to P.
For examples see page 12.

3/2-way poppet valve

The cartridge check valve is inserted into port P of the poppet valve.
4/2-way poppet valve (see page 4)
The cartridge check valve is inserted into port P of the plus-1 plate.

Function, section, schematic illustration: 4/2-way poppet valve

In conjunction with a sandwich plate, a plus-1 plate, under the $3 / 2$-way poppet valve, this valve valve can be used as 4/2-way poppet valve.
Function of the plus-1 plate:

Initial position:

The main valve is not operated. The spring (9) holds the ball (4.1) on the seat (11). Port P is closed and A is connected to T. In addition, a control line runs from A to the large area of the control spool (12), which is thus unloaded to tank. The pressure applied via P now moves the ball (13) onto seat (14). Thus, P is connected to B and A to T.

Transition position:

When the main valve is operated, the ball (4.2) is pushed against the spring (9) and then pressed onto the seat (15). Port T is then blocked, P, A and B are connected to each other for a short time.

Switched position:

P is connected to A. As the pump pressure acts via A on the large area of the control spool (12), ball (13) is pushed onto seat (16). Thus, B is connected to T and P to A. Ball (13) in the plus-1 plate has a "positive switching overlap".
In order to avoid pressure intensification when single rod cylinders are used, the annulus area of the cylinder must be connected to A.

Schematic illustration: initial position

Due to the use of the plus-1 plate and the arrangement of the seats, the following combinations are possible:

Symbol "D":

Symbol "Y":

Type M-4SEW 6 Y...

Technical data (for applications outside these parameters, please consult us!)
General

Electrical

Voltage type		DC	AC
Available voltages ${ }^{4)}$	V	$\begin{gathered} 12,24,42,96,110 \\ 205,220 \end{gathered}$	Only possible via a rectifier (see ordering details on page 11)
Voltage tolerance (nominal voltage)	\%	± 10	
Power consumption	W	30	
Duty		Continuous	
Switching time to ISO 6403		See table below	
Switching frequency	cycles/h	15000	
Protection to DIN $40050{ }^{\text {5) }}$		IP 65 with mounted and fix	g-in connector
Maximum coil temperature ${ }^{6)}$	${ }^{\circ} \mathrm{C}$	150	

3) The cleanliness class stated for the components must be adhered too in hydraulic systems. Effective filtration prevents faults from occurring and at the same time increases the component service life. For the selection of filters see catalogue sheets RE 50070, RE 50076 and RE 50081.
4) Special voltages on request
5) With mounted and fixed plug-in connector
6) Due to the surface temperatures which occur on the solenoid coils, the European standards EN563 and EN982 must be taken into account!

When connecting the electrics, the protective
conductor (PE $\stackrel{\perp}{=}$) must be connected according to the relevant regulations.

Switching time t in ms (installation: solenoid horizontal)

Pressure p in bar	Flow q_{v} in L/min	DC solenoid						DC solenoid + rectifier					
		Without tank pressure				$\begin{aligned} & U \\ & C \end{aligned}$	D	Without tank pressure				U	D
		U	C	D	Y		Y	U	C	D	Y	C	Y
140	25	25	30	25	30	10	10	30	40	30	40	35	35
280	25	25	30	25	30	10	10	35	45	35	45	40	40
320	25	25	35	25	35	10	10	35	50	35	50	40	40
420	25	25	35	25	35	10	10	40	50	40	50	50	50
500	25	25	40	25	40	10	10	40	55	40	55	50	50
600	25	25	40	25	40	10	10	40	55	40	55	55	55

Characteristic curves (measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

	Symbol	Comments	Operating pressure in bar				Flow in L/min
			P	A	B	T	
		Pressure to $P \geq T$	420/630			100	25
			420/630			100	25
		Pressure to $P \geq A \geq T$	420/630	420/630		100	25
			420/630	420/630		100	25
		Before switching from the initial position to the switched position, pressure must be present in port A. Pressure at $A \geqq T$		420/630		100	25
		Pressure to $\mathrm{A} \geq \mathrm{T}$		420/630		100	25
	"D"	Single ball valve (symbol „U") in conjunction with a plus-1 plate $P>A \geq B>T$	420/630	420/630	420/630	100	25
	"Y"	Two ball valve (symbol „C") in in conjunction with a plus-1 plate $P>A \geq B>T$	420/630	420/630	420/630	100	25

\triangle Attention!

Please take into account the "General guidelines" stated on page 12!
The performance limit was determined with the solenoids at operating temperature, 10% under voltage and with the tank not pressurised.

14

1 Solenoid „a" (plug-in connector colour, grey)
2 Protected hand override „N9"
3 Plug-in connector without circuitry to DIN EN 175 301-803 1)

4 Plug-in connector with circuitry to DIN EN 175 301-803 1)

5 Space required to remove the coil
6 Space required to remove the plug-in connector
7 Plus-1 plate

8 Name plate
9 Fixing nut, tightening torque $M_{A}=4 \mathrm{Nm}$
11 Identical seal rings for ports A, B, P and T
12 Valve fixing screws

- 420 bar version

4 off, M5 x 90 DIN 912-10.9, $M_{\mathrm{A}}=8.9 \mathrm{Nm}$

- 630 bar version

4 off, M6 x 90 DIN 912-10.9,
$M_{\mathrm{A}}=15.5 \mathrm{Nm}$
are included within the scope of supply.

Required surface finish of the mating piece
13 Porting pattern to DIN 24340 Form A, without locating pin hole
14 Porting pattern to ISO 4401 and
CETOP-RP 121 H with locating pin hole
Associated subplates:

- Without locating pin hole

G 341/01 (G1/4)
G 342/01 (G3/8)
G 502/01 (G1/2)

- With locating pin hole

G 341/60 (G1/4)
G 342/60 (G3/8)
G 502/60 (G1/2)
to catalogue sheet RE 45 052:
must be ordered separately.
${ }^{1)}$ Must be ordered separately, see page 11.

Accessories: inductive limit switch (dimensions in mm)

Monitored switched position	Ordering details	Limit switch
Switched position „a" monitored	QMAG24	Damped
Switched position „b" monitored	QMBG24	Undamped

The electrical connection is via a 4-pin plug-in connector with an M12 x 1 connection thread.
The plug-in connector must be ordered separately (see RE 08 006).
for further details regarding the

- Operating voltage,
- Current consumption,
- Load capacity of the outputs,
- Contact allocation,
see RE 24830.

The inductive limit switch can be connected as a normally open or normally closed switch (see RE 24 830).

Attention!

It has to be ensured that terminal 1 of the plug-in connector is connected!
Dim. L (plug-in connector, 10 mm withdrawal room and minimum bend radius for the connection cable). For plug-in connectors see RE 08006.

Straight plug-in connector Material No. R900031155	186
Angled plug-in connector Material No. R900082899	117
Plug-in connector with moulded on cable Material No. R900064381	156

- In order to operate the valve safely and to hold it safely in the switched position, the pressure in P must be $\geq A \geq T$ (for design reasons).
- The ports P, A and T (3/2-way poppet valve) as well as P, A, B and T (4/2-way poppet valve) are positively assigned to their individual functions. They must not be interchanged or plugged. Flow is only permitted in the direction of the arrow.
- When using the plus-1 plate (4/2-way function) the following lower operating values must be taken into account: $p_{\text {min }}=8 \mathrm{bar} ; q_{\mathrm{v}}>3 \mathrm{~L} / \mathrm{min}$.
- The specified maximum flow must not be exceeded.

	2/2-way circuit with a two poppet valve and check valve at port A The check valve must be installed in the pipework. Initial position: Flow blocked, maximum pressure permissible. Pressure is held in the actuator, even when the pump is switched off, due to the check valve at port A. Switched position: Free flow, maximum pressure permissible. Leakage drained via port T. The only leakage occurring is that which flows to T during the switching process.		3/2-way circuit with a single poppet valve Initial position: Lifting Holding only due to limitation of travel and pressure in port P. Switched position: Lowering
	2/2-way circuit with a single poppet valve and check valve at port A The check valve must be fitted in the pipework. Initial position: Free flow, maximum pressure permissible. Pressure is held in the actuator, even when the pump is switched off, due to the check valve at port A. Switched position: Flow blocked, maximum pressure permissible. Leakage drained via port T . The only leakage occurring is that which flows to T during the switching process.		3/2-way circuit with a two poppet valve and cartridge check valve in port P The check valve is fitted in the P port of the 3/2-way poppet valve. Initial position: Lowering Switched position: Lifting The load can be held in any position while the pump is switched off and the solenoid energised.
	3/2-way circuit with a two poppet valve Initial position: Lowering Switched position: Lifting Holding only due to limitation of travel and pressure in port P.		3/2-way circuit with a single poppet valve and cartridge check valve in port P The check valve is fitted into the P port of the 3/2-way poppet valve. Initial position: Lifting The load can be held in any position when the pump is switched off. Switched position: Lowering

4/3- (4/4-) way circuit with 2 two poppet valves
V1 and V2 in the initial position: Both cylinder sides are connected to the tank port.
V2 in the switched position: The piston moves to the left
V1 in the switched position: The piston moves to the right
V1 and V2 in the switched position: Both cylinder sides are connected to the pump port.
Rapid traverse is possible when a single rod cylinder with an area ratio of $2: 1$, is used.
Attention! When using single rod cylinders, the performance limit (double flow) and the maximum permissible operating pressure (pressure intensification) of the valve must be taken into account.
4/3- (4/4-) way circuit with 2 two poppet valves and cartridge check valve in port P of the 3/2-way poppet valves
V1 and V2 in the initial position: The piston is locked externally to prevent movement.
V2 in the switched position: The piston moves to the right
V1 in the switched position: The piston moves to the left
V1 and V2 in the switched position: Both cylinder sides are connected to the tank port.
Attention! When using single rod cylinders, the performance limit (double flow) and the maximum permissible operating pressure (pressure intensification) of the valve must be taken into account!

Bosch Rexroth AG
Industrial Hydraulics
D-97813 Lohr am Main
Zum Eisengießer 1 • D-97816 Lohr am Main
Telefon 09352 / 18-0
Telefax 09352 / 18-23 58 • Telex 689 418-0
eMail documentation@boschrexroth.de Internet www.boschrexroth.de

Bosch Rexroth Limited

Cromwell Road, St Neots,
Cambs, PE19 2ES
Tel: 0 1480/22 3256
Fax: $01480 / 219052$
eMail: info@boschrexroth.co.uk

The data specified above only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information.
The details stated do not release you from the responsibility for carrying out your own assessment and verification. It must be remembered that our products are subject to a natural process of wear and ageing.

